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We propose a parametrization of the four-point vertex function in the one-loop one-particle irreducible
renormalization group (RG) scheme for fermions. It is based on a decomposition of the effective two-fermion
interaction into fermion bilinears that interact via exchange bosons. The numerical computation of the RG flow
of the boson propagators reproduces the leading weak-coupling instabilities of the two-dimensional Hubbard
model at van Hove filling as they were obtained in a temperature RG scheme [C. Honerkamp and M. Salm-
hofer, Phys. Rev. B 64, 184516 (2001)]. Instead of regularizing with temperature, we here use a soft frequency
Q) regularization that likewise does not artificially suppress ferromagnetism. Besides being more efficient than
previous N-patch schemes, this parametrization also reduces the ambiguities in introducing boson fields.
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I. INTRODUCTION

Soon after the discovery of high-temperature supercon-
ductivity in the cuprates, the Hubbard model was proposed
to describe the electronic structure in the copper oxide
planes.!? Early theoretical considerations discussed the ef-
fect of a van Hove singularity on the superconducting tran-
sition temperature®* (see Ref. 5 for a review). In the past
decade fermionic Wilsonian renormalization group (RG)
methods have been very successful in classifying weak-
coupling instabilities of the two-dimensional (z,7")-Hubbard
model.5"'? The starting point in these methods is an exact
functional equation. Besides being very useful for proving
mathematical statements, this equation can be approximated
to allow a direct numerical calculation. In the case of weak
coupling an expansion in the fermionic fields can be trun-
cated by setting the six-point function to zero. For an appro-
priate Fermi-surface geometry this one-loop approximation
is also justified for intermediate couplings and scales.'?

Successes of the fermionic one-loop RG method include
the explanation of the interplay of antiferromagnetic and su-
perconducting instabilities in the Hubbard model for small
next-to-nearest-neighbor hopping —t'. Results were first ob-
tained using Polchinski’s version of the RG,”? the Wick or-
dered scheme,”!” and the one-particle irreducible (1PI)
scheme.!"'? Near half filling, where the Fermi surface is
nested, antiferromagnetism was found to be the leading in-
stability. For smaller fillings on the hole-doped side, where
the Fermi surface is more strongly curved and regular,
d2_,>-wave superconductivity is dominating (although not
present initially in the repulsive Hubbard model, such a term
is generated as an effective interaction in the RG flow; spe-
cifically, it is induced by antiferromagnetic correlations). In
between the two regions the antiferromagnetic and supercon-
ducting tendencies mutually reinforce each other.!>'* This
saddle-point regime, where the main contribution comes
from the saddle or van Hove point, is interpreted as the
weak-coupling analog of the Mott state but not yet fully
understood.

In all works mentioned in the last paragraph a Fermi-
surface momentum or frequency cutoff was used. Although
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being conceptionally clear, this regularization suppresses
small-momentum particle-hole fluctuations.® Overcoming
this drawback by using temperature as a flow parameter, the
leading instability for larger hopping —t' €[0.34¢,0.5¢] was
found to be ferromagnetism at van Hove filling and triplet
superconductivity away from van Hove filling.%!> This result
was qualitatively confirmed by the same method,'® by an
interaction RG flow,'” and by a two-particle self-consistent
Monte Carlo approach.'® The mutual suppression of ferro-
magnetic and d-wave superconducting tendencies decreases
the critical scale at van Hove filling for intermediate —¢' by
several orders of magnitude. Within numerical accuracy, the
instability analysis of the temperature RG flow even suggests
the existence of a quantum critical point between the ferro-
magnet and the superconductor.

The one-loop 1PI RG flow used here is described by the
evolution of an effective four-point vertex function and a
self-energy. Even if the self-energy is not taken into account,
the flow equation for the four-point function is a non--linear
integrodifferential equation (see Sec. IT). This equation has to
be solved for a function with three independent momenta and
three independent frequencies. For a numerical computation,
as applied by the above-mentioned studies, further approxi-
mations are needed. By Taylor expansion and power count-
ing it can be argued that the main contribution to low energy
excitations comes from frequency zero. All above-mentioned
one-loop studies neglect the frequency dependence of the
vertex function and evaluate the right-hand side of the flow
equation at frequency zero. In a next step the momentum
dependence is discretized. Again by a low energy argument,
the momenta of the vertex function are projected onto the
Fermi surface in most one-loop studies. In a so-called
N-patch scheme”!® the Fermi surface is divided into N
patches,” and the angular dependence of the vertex on each
momentum is approximated by a constant in each patch.
Evaluating integrals as sums over patches, this leads to a
coupled system of ~N? ordinary, nonlinear differential equa-
tions, which can be solved numerically. In the interaction RG
flow!” the momentum dependence is not projected onto the
Fermi surface so that full momentum space (-, 7]* has to
be covered by patches.
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Despite the successes of the one-loop N-patch schemes,
the method shows room for improvement. First of all, the
self-energy is neglected in most one-loop RG studies. Qua-
siparticle scattering rates!''421-23 of the Landau Fermi liquid
give a first hint of self-energy effects. Also, deformations of
the Fermi surface due to the real part of the self-energy can
be taken into account.'> A new dynamical adjustment of the
propagator?* can help include the self-energy entirely. In-
cluding self-energy effects is possible in our scheme; in par-
ticular, we can study the flow of the Fermi surface since our
regulator is only frequency dependent. However, this is be-
yond the scope of the present paper, so all self-energy effects
are left out here. A second problem is the observed flow to
strong coupling, which limits the validity of the one-loop RG
flow. The flow has to be stopped before all scales are inte-
grated out. That is, the full model is not recovered in the flow
since the infrared regularization is not removed completely.
This drawback may be overcome with a modified one-loop
scheme by allowing the flow to continue in a symmetry-
broken phase.?>2® Using this modified scheme the exact so-
Iution of a mean-field model for superconductivity is ob-
tained in the thermodynamic limit.>>?7 Furthermore, the
scheme has been recently applied to the attractive Hubbard
model.?® Due to the emergence of an effective superconduct-
ing gap, which regularizes infrared divergencies, all scales
can be integrated out. However, since the vertex function is
not charge invariant anymore, the flow equations become
very complicated. Besides the purely fermionic description
of the RG flow, a bosonic continuation with mean-field
theory? or partially bosonized RG flows3*33 are promising
methods to treat the symmetry-broken phases.

We also address a third problem of the one-loop N-patch
schemes, which is the parametrization of the effective vertex
function. Although the initial four-point vertex function of
the Hubbard model is a constant in momentum space, a non-
trivial and physically important momentum structure evolves
in the one-loop RG flow. The approximations entailed by the
projections in N-patch schemes are not yet fully understood.
A severe restriction on the possible choice of N is the high
computational cost of solving ~N? ordinary differential
equations, whose coefficients have to be calculated as two-
dimensional integrals in every integration step. For the same
reason, including the frequency dependence is very costly. A
more efficient parametrization of the four-point vertex func-
tion should identify the relevant processes. Their separation
from irrelevant remainders can be guided by previous one-
loop studies, and the observation that the identification of the
leading instabilities is determined by the asymptotic singular
structure of the flow equation.

In Sec. IIl we propose a parametrization of the vertex
function in the one-particle irreducible RG scheme. Guided
by the singular momentum structure of the right-hand side of
the flow equation, we identify three channels with distinct
singular momentum structures.>* All graphs of the flow equa-
tion are uniquely assigned to a channel and the channels are
general two-fermion interactions, so this is no approxima-
tion. However, since we define the channels based on their
singular momentum structure, there are still ambiguities in-
volved. This condition allows different definitions, for ex-
ample, how a constant term is distributed over the channels.
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Therefore the initial on-site interaction is not assigned to a
channel but kept fixed in the flow explicitly. Nevertheless,
the definition of the channels in terms of graphs is natural
from the structure of the flow equation.

In the thus defined channels the effective two-fermion in-
teraction is expanded in terms corresponding to fermion bi-
linears that interact via exchange bosons. For this study, we
choose scale- and frequency-independent form factors for the
fermion bilinears. In Sec. IV, we show that only a small
number of terms is needed to capture the essential features of
the one-loop RG flow in the case where one channel is domi-
nant. In the case of competing channels, we choose the pa-
rametrization guided by the results from N-patch studies. In-
serting this decomposition into the RG equation and
projecting the right-hand side onto the coefficients of the
expansions, the flow equations for the boson propagators are
derived. In Sec. VI we state these flow equations for general
expansions with a finite number of form factors when the
tails of the expansions are neglected.

We test the proposed parametrization of the vertex func-
tion in an application to the (r,t')-Hubbard model at van
Hove filling and temperature zero. Because at this filling the
interplay between superconductivity and ferromagnetism is
important, it is essential to choose a scale-dependent regular-
ization that does not artificially suppress small-momentum
particle-hole fluctuations.® Here we do not use the tempera-
ture flow but instead choose a very mild infrared regulator
that keeps these fluctuations but provides enough regulariza-
tion to have a well-defined flow equation (see Sec. V). Fur-
ther approximations are applied for the numerical implemen-
tation in Sec. VII, where we neglect the frequency
dependence of the boson propagators and discretize their
momentum dependence using step functions. Since this mo-
mentum dependence is mainly determined by the one-loop
bubbles, there is good guidance in that. Also, we choose a
small number of form factors. The numerical results are
stated and discussed in Sec. VIII. We obtain the same order-
ing tendencies of the Hubbard model at van Hove filling as
in the temperature RG flow.°

In the remaining part of this introduction we describe the
model and our notations. Consider the two-dimensional qua-
dratic lattice I'=7%/L7? with unit spacing, length L e 2N,
and periodic boundary conditions. Then the dual lattice or
momentum space is given by the torus I‘*:%TZZ/ (27@7?%). Let
ap - and a;U be the fermion operators on the associated Fock
space with momenta p € I'* and spin o € {+,-} in quantiza-
tion direction. The (¢,7")-Hubbard model on I' is defined by
the Hamiltonian

Hla'al= 2 e(pa) ,ap,
pel™
oe{+,-}

oot
+U E .aPlw+asz—aP3"aP1+P2‘P33+ (1)
p--p3el”

with an on-site repulsion U>0 between electrons. The ki-
netic term of Eq. (1) emerges in a tight-binding approxima-
tion. That is, the transfer integral, which describes electron
hopping between different lattice sites in real space T, is set
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to ¢ for nearest neighbors and —t’ for next-to-nearest neigh-
bors. In momentum space this corresponds to the dispersion
relation

e(p) = 2t(cos p, +cos p,) —4t' cos p, cos py— u, (2)

where the chemical potential w is already included in the
definition of e(p) and H, which is convenient for setting up
the grand canonical partition function.

In the following ¢ is set to 1, that is, all quantities are
measured in energy units of . The next-to-nearest-neighbor
hopping is considered in the parameter range —t' € (0,75). It
determines the shape of the noninteracting Fermi surface to-
gether with the chemical potential. For u=4¢" the system is
at van Hove filling where the Fermi surface intersects the van
Hove points, where the gradient of dispersion (2) vanishes.
This causes a logarithmic divergence in the density of states.

II. FERMIONIC 1PI ONE-LOOP RG

We consider the 1PI fermionic RG flow in the one-loop
approximation.'? Since we restrict the RG flow to the sym-
metric phase, the effective interaction, which depends on the
RG scale A, is assumed to be SU(2) and U(1) symmetric, as
is the initial Hubbard interaction. An effective two-fermion
interaction with those symmetries can be generally written in
terms of a four-point vertex function V in the following way:

1
VALW]= Ef dpy -+ dpsd(py + py=p3 = pa)Va(P1.p2.03)

X E lz_b(r(pl)‘z/(r’(pZ)ll/(r’(p3)l/I(r(p4)' (3)

’
T,0

ef+-}

Due to momentum conservation, the four-point vertex func-
tion V, is a function of three independent momenta and fre-
quencies. Here we denote p=(py,p) with Matsubra fre-
quency p, and spatial momentum p.7The integral [dp is
shorthand notation for lBEPo I (_mﬂz(ﬁ% in the thermody-
namic limit L— and at inverse temperature (. The initial
on-site interaction of the (z,7)-Hubbard model is character-
ized by the constant vertex function Viz (p1,p2,.p3)=U.

The flow equation for the effective vertex function in the
1PI RG scheme reads as'3

VA(Pl, ..-D3) :7;13(1’1, < P3) +T§h(p1, <o D3)
+7§1(pl’“'p3)’ (4)

where the dot denotes the derivative with respect to the scale
A. The particle-particle contribution and the crossed and di-
rect particle-hole contributions are, respectively, given by

d
%p(ﬁl’ -.-D3) =—Jdp[ﬁG(P)G(P1 +P2—P)]

XVA(P1.p2:P)VA(P1 + 2= p.p.p3),

d
To(p1s - P3) =—Jdp[ﬁG(p)G(p +p3—p|)]VA(p1,p

+p3=p1.P3)VAP.P2p + P3=P1)s
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d
T(p1- ---p3)=Jdp{d—AG(p)G(p +py—=p3) |[2Valpr.p

+ P2 =p3P)VAP.p2.p3) = Va(p1.0 + P2
—P3.P1 + P2 P3)VaAp.p2.p3) — Valpr.p
+p2=p3.P2)VAP.p2p + P2 = p3)].

The scale derivatives in the integrands act only in the square
brackets. Since we neglect the self-energy, the propagator
G(p)=[ipy+e(p)]'xa(p) is the free propagator multiplied
with an appropriate cutoff function. That is, although not
denoted explicitly, it is understood throughout that the propa-
gator G(p) depends on scale A.

Since the initial vertex function U of the Hubbard model
obeys the following symmetries, the flow equation implies
that the effective vertex function V, satisfies

Va(p1.p2.03) = Va(p3.p1 + P2 = p3.p1)  (PHS),

Va(P1.p2:03) = VAP p1.p1 +P2—P3)  (RAS).  (5)

The first symmetry expresses invariance of the partition
function as a functional integral under a change in integra-

tion variables > i and ¢ ity and is called particle-hole
symmetry (PHS). The second symmetry is directly inherited
from Eq. (3) and accounts for remnants of the antisymmetry
(RAS) of the Grassmann variables.

III. DECOMPOSITION OF THE EFFECTIVE
INTERACTION

The parametrization of the vertex function developed in
this section is based on the observation that mainly the sin-
gular momentum structure of the RG equation determines
the qualitative instabilities of the flow. That is, the parametri-
zation of V should simplify the momentum dependence but
should keep track of all possible singular contributions. If the
vertex function is regular, the only momentum dependence
that can change the singular behavior of the RG equation is
the transfer momentum that propagates through the scale de-
rivative of the particle-particle or particle-hole bubble

. d
Dpppn(l) = A J dpG(p)G(L = p). (6)

In order to absorb this momentum dependence we introduce
three additional channels corresponding to three different
transfer momenta in the RG equation, respectively,

VAIW] = Vi [P+ VW] + V[ W]+ VR[P]. (7)

The initial on-site interaction of the Hubbard model
Vum [ W] is kept in the parametrization since there are ambi-
guities in assigning it to the other channels. It will remain
constant in the flow and can be seen as a driving force. This
does not mean that the on-site term contained in full interac-
tion (7) remains independent of scale. The corrections to it
are absorbed as contributions to the additional channels,
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3

1 - _
Vsd¥l=- f dgdq' dige(q.q'.) 2 [F(g)o (1~ )]
J=0

X[W(g" oW (i-g")],

3
1 L
VW] =~ n f dqdq' di®y(q.q' 1) 2 [V(q) oV (g +1)]

j=1

X[W(g"o"W(g" = D],

Vil ¥]=- i f dqdq' di®g(q.q" D[V (q) V(g +1)]

X[W(g"W(g" - D], (8)
where o) are the Pauli matrices for J=1,2,3 and ¢© is the
two-dimensional unit matrix. Each of the channels [Eq. (8)]
is a general U(1) and SU(2) symmetric two-fermion interac-
tion. We call them the superconducting, magnetic, and for-
ward scattering channel, respectively. These names are legiti-
mate if the functions ®ge, P, and Py are regular in their
first two momentum indices and possibly singular only in the
third (bosonic) momentum index /. Note that the ®’s are zero
at the beginning and are generated in the flow. In order to
define their evolution we use the standard Fierz identity
%ELOUETJ])UZO'(UJ;%:5010450203 to restate Eq. (8) in terms of a
vertex function

A A
VaA(P1.p2.03) = U= @sc(p1.p3.01 + p2) + Pyy(p1.p2.p3 = p1)

1 1
+ Eq)/Aw(Pl,Pz,pz -p3) - 5‘192(1)1,172,172 - p3)
)

and insert it into the RG equation. The strong momentum
dependence of the superconducting channel should be the
sum of the two incoming particles p;+p, which is the trans-
fer momentum of the particle-particle graph. Likewise the
combinations p3—p; and p,—p; are the transfer momenta of
the crossed and direct particle-hole graphs, respectively. So
we define

A
Dgc(p1-p3:p1 +P2) == Top(P1:02:P3) 5
Cbﬁ;(Pl’Pz,m -p1)= 7;;(171,172,173),

q.)zl}(Pl,Pz»Pz —-p3)=- 27zh(P1,P2,P3)
+ Toh(p1sp2p1 +P2—p3). (10)

This decomposition of the interaction vertex into three
channels is exact at one-loop level, and the symmetries
(PHS) and (RAS) are satisfied by each channel, that is,

CD/S\C(q’q,»l) = ®§C(l - C[,l - q,’l) = q)/S\C(q”q’l)’
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qjﬁ/[((q’q,’l) = (Dﬁ/l((q,9q’_ l) = q)}lA/I/K(q + 196], - l’_ l)
(11)

The first identity in each line corresponds to (RAS) and can
be directly seen from Eq. (8), whereas the second identity
corresponds to (PHS). Both symmetries follow from Eg.
(10). Therefore Eq. (9) satisfies (RAS) and (PHS).

In summary, the definition of the channels is chosen such
that each channel carries one critical momentum depen-
dence. If the vertex function is still regular, all possible sin-
gular momentum dependences of the flow equation are ab-
sorbed by the channels. Furthermore, the decomposition
satisfies (RAS) and (PHS). The assignment of the graphs,
however, is not unique for special momenta. For example, a
constant term can be freely distributed among the channels.
Nevertheless, we have uniquely defined the channels assum-
ing that the different classes of graphs with their correspond-
ing transfer momenta form a natural decomposition. This is
the only definition such that each channel absorbs one sin-
gular momentum and such that (if the transfer momentum
becomes singular) the channels correspond to interactions of
Cooper pairs, spin operators, and density operators, respec-
tively, as written in Eq. (8).

Next we further decompose the interaction vertex by writ-
ing each channel as an interaction of two fermion bilinears
interacting via an exchange boson. Naturally, the critical
transfer momentum, which as a sum of two fermion mo-
menta is a boson momentum, is chosen to be the momentum
of the boson propagator. Due to (PHS), ®3-(q.q’,l)
=<I>/S\C(q’ ,¢,1) and we can expand

I I
Piclaq' D= 2 Dﬁn(Z)fm(E 3 q)fn(g - q')

m,neZlgc
+ Ric(q.9'.0) (12)

such that V/S\C[‘If] describes the interaction of Cooper pairs
via the boson propagator D(I) up to a remainder term R’S\C.
Actually, @4 as a function of its first two indices can be
regarded as the kernel of a Fredholm operator. But since we
are not able to determine the scale-dependent eigenfunctions,
we expand in a given (scale-independent) finite set of form
factors (f,,),, < Io and leave a remainder. The form factors are
orthonormalized on full momentum space (-, ]* (divided
by 47%) and depend only on the relative momentum of the
Cooper pairs, representing different singlet and triplet lattice
symmetries. In principle an expansion in momentum and fre-
quency degrees of freedom is possible. For simplicity we
take an approach where the form factors (in contrast to the
boson propagator D) do not depend on frequency. This
leaves an ambivalence in the definition of D such that ex-
pansion (12) is satisfied. We set the frequency corresponding
ly S . . .
to g and ¢’ to 5, which is a fermion frequency since [, is a
boson frequency. The leading instability will occur at /,=0
so in that case go=¢,=0 which will give the main contribu-
tion. For < e this is an overestimate since the lowest pos-
sible (absolute) value of a fermion frequency is i%. Alter-
natively for finite temperature, g, and g, could be set to
w

i ly _ . . S
Eoi g and 5°+ 5 respectively, with symmetrization over the
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sign. That is, for m,n € Zgc, the coefficient D (1) in Eq. (12)
is given by

et a5
(271_)2 (277)2fm —-q fn 2 -q
X‘I’sc(qsq,,l)|qo=q(’):zo/2 . (13)

With this choice of definition, (RAS) implies D,’}m(l)
—DA (D=0,0 Dmn(l) where f,(p)=0,f,(—p) with o, either
+ or —. Therefore, D is a block matrix with separate blocks
for singlet and triplet symmetries.

Likewise the magnetic and forward scattering channels
are expanded. Now by (RAS), ¢>f4/K(q,q’,l)=¢>f,ﬂK(q’,q,
-I), so we can write

Dy, (1) =

1
dylg.q' D= > M, (l)fm<q+ )fn<q —5>
mnelyg
+Ry(g.q'.0),
1
(I)I/;(q9q,9l) = 2 mn(l)fm<q + )fn( 2)
mnelyg
+Ri(q.q'.0), (14)

with symmetric boson propagators M™ (I)= MA (=) and
KA L= KA (=1) and remainder terms RAA,, and R The func-
tions (f,, ),,E 7, are again scale independent, orthonormahzed
on (-, 7%, and frequency independent. Although different
expansions for the magnetic and forward scattering channel
are possible, we choose the same for notational simplicity.
The index sets Zgc and Zyx need not be the same. In analogy

to the superconducting boson propagator we set

_ dzqﬂ( 1) ( 1)
My, () = J ey LT

A
XDy (g.q's l)|q0=—10/2,q('):10/2 >

ot il -3
mn(l) J(z )2(2 )2 m 2 fn q _2

X Dy(q, 4" Dlgg=iy2.9=1y2 - (15)

With the boson propagators defined in this way the three
expansions and the remainder terms fulfill (RAS) and (PHS)
separately. The magnetic interaction describes interacting
spin operators. For example, a constant fs(p)=1 describes a
local spin operator and a further expansion in the s-wave
channel generalizes to nearest neighbors and next-to-nearest
neighbors and so on. A d-wave form factor in the forward
scattering expansion describes a possible Pomeranchuk
instability.'°

So far we have decomposed the interaction vertex such
that boson propagators carry the critical momentum depen-
dence of the right-hand side of the RG equation at least as
long as the effective vertex function is regular. If it can be
shown that the remainder terms Rj., R}, and R} remain
regular or at least less singular than the boson propagators
(even if the effective vertex function develops a singularity
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in the flow), then several benefits are gained for the analysis
of competing instabilities. First, the decomposition of the
interaction allows to identify qualitatively which instabilities
are favored. After the flow is stopped, the dominant terms in
the interaction can be decoupled by Hubbard-Stratonovich
transformations so that one can proceed with a bosonic flow.
Furthermore, the parametrization of the flow is simplified
since no function of three fermion momenta and frequencies
has to be studied but only several functions of one fermion
momentum and frequency. The boson fields involved have
point singularities, which pose substantially less numerical
effort than the extended Fermi-surface singularities. In the
following the scale dependence of the boson propagators and
the remainder terms is not denoted explicitly but understood
throughout.

IV. SUPERCONDUCTING CHANNEL

In this section we consider an example to illustrate our
method. Let the Fermi surface be curved and regular. By this
we mean that the Fermi surface does not meet the van Hove
points and that Umklapp scattering is irrelevant. Then the
particle-hole bubble is negligible compared to the particle-
particle bubble, which develops a strong peak for small mo-
mentum and frequency.

In a first step the particle-hole graphs are altogether ne-
glected. The RG equation (4) without self-energy effects is
then solved by the solution of a self-consistency equation,

Vala:l=4.9") =V, (4.1 - q.q") - f dpG(p)G(I-p)

XV (@l =q.p)Vall-p.p.q"),  (16)

where G(p)=[ipy,—e(p)]~'xa(p) is the free fermion propaga-
tor multiplied with a regulator function x,(p). In this section
we choose a strict Fermi-surface momentum cutoff; that is,
modes with |e(p)| <A are suppressed completely. If the ver-
tex function is expanded in a complete set of A-independent
functions f, but A-dependent coefficients v (),

mn

!
Valg.l = .4 ) =Valg' 1= q'.q) = 2 vﬁn(l)fm<§ - ‘1>

l ’
an(i“] >,

then the self-consistency [Eq. (16)] is solved by v =A"",
where the scale-dependent matrix Amn(l)=(VA0);11n(l)
+® (1) is given by the initial condition and the particle-
particle bubble

apg= [ wewcu-p(t-p)i(-0) a7

We concentrate on the singular case [=0. If the functions f,
could be chosen such that CD””’(O) and (VAO) ,(0) are both
dlagonal then the matrix A(O§ could easﬂy be inverted to
give an(O) VAO(O)[I + VAO(O)CD”"(O)] .. If there is an at-
tractive channel in the initial COIIdlthIl that s, 1/\0<0 for

some n, the flow in this channel diverges for large- enough B
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due to a zero in the denominator. On the other hand, the flow
of ¥ is asymptotically free for all n with Vr/l\0> 0 (repelling).

However, ®77(0) is not diagonal in general. Suppose that
the functions f,, do not depend on frequency. Following Ref.
35 we change variables p=m(E, ) with E=e(p) and an
angle 6 to obtain

BE

tanh—

2 f d0I(E.0)f, [ w(E.0)If,[ 7(E.O)].

Ao
P (0) = J dE

with Jacobian J(E, 6). The 6 integral is a smooth function of
E for a curved and regular Fermi surface. For A, small
enough the zeroth order of a Taylor expansion in E, that is, a
projection onto the Fermi surface, gives diagonality if the
f.’s are chosen as Fermi-surface harmonics.® Therefore the
main contribution of @g;(O) can be made diagonal for a
curved and regular Fermi surface.

This gives a good understanding of the flow in the super-
conducting channel [Eq. (12)]. In a diagonal expansion of
dominant processes only form factors that give rise to posi-
tive boson propagators have to be taken into account. All
other terms in the expansion are suppressed to zero and can
be neglected since they will not influence the qualitative be-
havior of the flow. In practice one suspects that only the
biggest positive coefficient plays a role in the flow to strong
coupling (depending on the size of the corresponding
bubble).

For a nondiagonal expansion one cannot separate the ir-
relevant modes exactly. There will be a flow to strong cou-
pling if det A=0 (for any finite expansion) at some scale.
However, since diagonality holds approximately, there is a
good chance of capturing the singular behavior of A in a
small matrix of well-chosen form factors.

In a second step we take into account the full one-loop
RG equation with all particle-particle and particle-hole
graphs and start with the initial repulsive Hubbard interac-
tion. Due to the curved and regular Fermi surface and negli-
gible Umklapp scattering assumed in this section, we only
consider the superconducting channel and decompose

1
VA(CIJ_Q»CI')=— E Dmn(l)fm< q)fn(E_q’>

m,nelgc

+U+R(q,l-q.q9"). (18)

As discussed above we select only a few form factors that
describe the superconducting channel correctly and drop the
remainder term Rgc of the expansion in the superconducting
channel [Eq. (12)].3" The function R in Eq. (18) arises from
particle-hole graphs. We will study its influence on the flow
in the superconducting channel and show that the Kohn-
Luttinger effect is present in our method. That is, although
starting at A, with a repelling VAO(q,l—q,q’)= U>0,
particle-hole terms will create an attractive superconducting
interaction.

Inserting decomposition (18) into the RG Eq. (4) and pro-
jecting the particle-particle graphs according to Eq. (13) give
the flow equation for the superconducting boson propagators
for n,m € Zyc
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Dmn(l) = Unf dlu'(p’l _p)

[E Dma(z)fa< ) 6m,sU—am(p,l>]

aelgc

|: 2 sz (l)fa ( ) - 6n,SU_ an(p’l):|’

a EIS
(19)

with initial values D,,,(I)=0 at scale A, and with the
contribution from the particle-hole channels a,,(p,])
f(27r m(%_q)R(Q’l_q’p)MO:lO/Z' We dlu‘(p’k)
dA[G(p)G(k)]dp for the bubble integration and f,,(—p)
=0,,f(p) distinguishes between singlet and triplet symmetry.
Further we assume that Zg- contains the index n=S where
fs(p)=1 is the constant form factor.

The evolution of R is given by the particle-hole graphs,
which unlike the particle-particle graphs remain bounded at
all scales. In the beginning of the flow D is still small, so we
neglect all particle-hole graphs proportional to D. We further
neglect the remaining direct particle-hole graphs since they
cancel exactly for a constant vertex function; hence, they
remain small for a nearly constant vertex function. (The ini-
tial condition is VA0=U, that is, constant.) Then the flow
equation for R, given by crossed particle-hole graphs only, is
solved by R(q,l-q,q")=iy(q'—q)-U with (l)=U[1
+U<I>ph(l)]‘l where ®,,(1)=[dpG(p)G(p+1) is the particle-
hole bubble.

Although ®,(1) <0 (for [,=0), the denominator of ¢ re-
mains nonzero for a sufficiently small initial coupling U
since the particle-hole bubble is bounded in case of a curved
and regular Fermi surface. So (1) is a regular (smooth for an
appropriate cutoff) and symmetric function that can be ex-
panded in the form factors we are interested in. Again, the
frequency dependence of # is not taken into account here.
Neglecting possible remainders of this expansion, the flow
equation for the superconducting boson propagator reads as

Dmn(l) =0y E [Dmu(l) - bmu]q)ua (l)[Du n(l) ba n]

aa’ eZyc

denote

(20)

where baa _f(z.”)z (2,".)2 L//(q C])|q0 qofa(q)fa ((1')

If we only take into account two form factors Zgc
={S,1} with fy¢(p)=1 (s-wave) and f;(p)=cos p,— cos py
(d2_2-wave), then bg;=b,4=0, so b is diagonal as is @““ (0)
in thls case. Then the boson propagator D,,,(0) is d1agona1 as

well and the flow [Eq. (20)] factorizes for /=0 such that the
right-hand side is always positive. The coefficient bgg is of
order U and positive, so Dgg is suppressed to zero. That is,
s-wave superconductivity is always suppressed by the initial
repulsive interaction. On the other hand b, is of order U?
and negative, so D;;(0) grows without bounds. Therefore,
particle-hole fluctuations induce an attractive d-wave pairing
interaction, which will be essential for the study of supercon-
ductivity in the Hubbard model at van Hove filling. Here we
have not included triplet superconductivity, which can be-
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come dominant as well. In general, attractive interactions in
the Cooper channel are induced, so our method does capture
the Kohn-Luttinger effect. The approximations made are
valid provided that the scale is not too low.

In summary, the proposed decomposition of the interac-
tion vertex is well understood for a curved and regular Fermi
surface, where there is no van Hove singularity and where
Umklapp scattering is irrelevant. Namely, if the expansion in
form factors is diagonal, we gave a clear argument which
form factors have to be included in the expansion such that
the remainder of the expansion is negligible. In the general
case diagonality holds approximately. The influence of sub-
dominant particle-hole fluctuations can become important if
there is no strong attractive interaction already initially.

However, if Umklapp scattering and a van Hove singular-
ity in the density of states are present, particle-hole fluctua-
tions can diverge by themselves and the mixing between
particle-particle and particle-hole channels is strong. This
case is not analytically understood yet and treated numeri-
cally in the following.

V. 2 SCHEME AND INTEGRATION OVER HIGH SCALES

Although the renormalization group idea is independent
of the type of regularization used to define the flow (pro-
vided that the regularization satisfies some minimal condi-
tions, e.g., that it makes the flow equation well defined), its
choice can become a delicate matter once approximations are
used. In particular, we restrict the flow to the symmetric
phase and apply the one-loop truncation. Parts of the vertex
function will grow strongly at small scales, indicating an
instability to an ordered (symmetry-broken) state. Since we
are using a weak-coupling scheme, we have to stop the flow
before all modes are integrated out; that is, the full model is
not recovered in the flow. Therefore, the one-loop flow con-
fined to the symmetric phase may depend on the type of
regularization, and one has to compare the results of different
regularization schemes.

Since we are especially interested in the interplay between
d-wave superconductivity and ferromagnetism, we have to
choose a regularization that does not suppress small-
momentum particle-hole fluctuations.® In the Hubbard model
at van Hove filling the density of states diverges logarithmi-
cally at low single-particle energies. At zero temperature and
without scale regularization, the particle-hole bubble at zero
momentum transfer is given by minus the density of states.
Therefore, the particle-hole bubble at zero momentum trans-
fer and zero temperature should diverge logarithmically at
low energy scales in the presence of a van Hove singularity.
However, for example, this is not the case for a Fermi-
surface cutoff which, at all nonzero scales, suppresses the
small-momentum particle-hole excitations completely.® For
such a Fermi-surface cutoff the particle-hole bubble at zero
momentum transfer is zero for all finite scales at temperature
zero. Even for nonzero temperature this means an artificial
suppression of small-momentum particle-hole processes
down to the very lowest scales. Instead of a Fermi-surface
cutoff we multiply the bare propagator with the regulator
function
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which is independent of momentum but depends on fre-
quency. The frequency () is the scale parameter we use to
generate the RG flow, and it replaces the A we used in the
general discussion in Sec. II. Since possible zeros of the
denominator in the integrand of the bubble integration are
canceled, the bubbles are regularized for all temperatures if
the scale (1>0. Small-momentum particle-hole processes
are not artificially suppressed to lowest scales with this regu-
larization since the particle-hole bubble, now formed with
the Q-dependent propagator G(p)=[ipo—e(p)]~' xa(p), has
the right asymptotic scaling behavior at temperature zero and
van Hove filling; that is, ®,,(0)~log . The particle-
particle bubble ®,,(0)~ (log 0)? diverges faster for the
same parameters, as expected.

In the limit ) —oo regulator function (21) vanishes;
hence, the vertex function is the initial on-site interaction U
of the Hubbard model. For ) —0, xo(p)—1; i.e., the regu-
lator is removed. The regularization is mild, but it suffices to
make all loop integrals in the flow equation converge. Thus it
is an admissible scheme. For brevity we call this regulariza-
tion the () scheme.

Because perturbation theory converges for large (2,3%3
we fix a scale () and perform the integration over the de-
grees of freedom with propagator [1- )(Qo(p)][ipo—e(p)]‘1
by perturbation theory. The result provides the initial condi-
tion for the flow at scale 1=(). To second order in U this
gives for the Hubbard model in terms of a vertex function as
in Eq. (3),

Vﬂo(pl’pZ’pS) =U- Uzq)pp(pl + pZ) - U2®ph(p3 _pl)
+O(UIQ)?, (22)

where the first term is the initial Hubbard repulsion. The
second term is the particle-particle bubble, which generates
an attractive s-wave superconducting channel. It will always
be dominated by the repulsion U. The third term in Eq. (22)
comes from the crossed particle-hole graph. The contribution
from the direct particle-hole graphs cancels out because the
Hubbard interaction is on-site.

We choose the initial condition for the boson propagators
at scale () as

DSS,O(I) = Uzq)pp(l) >

Mss (1) = Kss o(1) == U*® (1) > 0 (23)

for the constant s-wave form factor fs(p)=1. The symmetric
part of Dgg (/) is positive as well, as is Dgg (lp=0,1). This
assignment of the result of perturbation theory to the initial
boson propagators is not unique. For example, attracting
parts of the particle-hole term could be absorbed in a super-
conducting d-wave term. But the assignment [Eq. (23)] is
consistent with the definition of the three channels in Sec.
III, which do not mix in second order. Furthermore, the
Kohn-Luttinger effect is very small in perturbation theory.
The attractive coefficient of d,»>_» superconductivity in an
expansion of Uzq)ph(p3—p]) is bounded by ~0.01U? even
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for low scales and remains finite if the scale regularization is
removed. Therefore the ambiguity of Eq. (23) will not be
important. In fact, we have numerically checked different
distributions of the interaction terms in the initial conditions.
We choose )y > U big enough such that the results presented
in Sec. VIII do not depend on the initial conditions for the
boson propagators. The latter is negligible compared to in-
teractions generated in the flow by the local repulsion term
linear in U. So for large enough ), our results are indepen-
dent of the particular choice of €.

VI. RG EQUATIONS OF THE BOSON
PROPAGATOR FLOW

In order to derive the RG equations for the boson propa-
gators we insert the expansion of the three channels [Egs.
(12) and (14)] into the RG equation (4) and project the right-
hand side of it according to the definitions of the boson
propagators [Egs. (13) and (15)]. Similarly, equations for the
remainder terms Rgc, Ry, and Ry can be obtained.

In case of a curved and regular Fermi surface we dis-
cussed in Sec. IV how to separate singular from regular parts
in the superconducting channel if the other channels are ne-
glected. That gave a condition which form factors should be
included in the expansion of the superconducting channel.
Furthermore, as also analyzed in Sec. IV, we developed a
good understanding of the integration of all one-loop graphs
down to intermediate scales in this case. Therefore we argue
that, with the right choice of form factors, the remainder
terms can be dropped because the channels are described
well even by only a few boson propagators.

In presence of van Hove singularities and relevant Um-
klapp scattering, however, the mixing of the channels is very
hard to control. Here we rely on the results of N-patch
schemes®1? and choose a combination of form factors cor-
responding to the main instabilities found there. A detailed
study of the remainder terms is left for future work.

The flow equations derived in this section are valid for
arbitrary index sets Zgc and Z,k, assuming that they both
contain the index S that stands for the constant form factor
fs(p)=1. If the remainder terms are dropped, then the flow
equation for the superconducting boson propagator reads for
n,me Igc,

Dmn(l) = a'mf dM(psl_p)

x{ > Dma(l)fa(% - p) ~US,s- aﬁf(p,z)}

aeTgc

X{ > Dan(z)fa(% - p) - US,5— aic(p,l)} :

aeTgc

(24)
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FIG. 1. The graphical representation of the flow in the singlet
superconducting channel.

where d,u(p,lip):dpd%G(p)G(l + p) is the bubble integra-
tion. The initial local repulsion U will suppress s-wave su-
perconductivity Dgg. The contribution of the magnetic and
forward scattering channels is given by

s a5

bb' eTyx

e _l dzq (l_ )
o, (PJ) ) (277)2fm D) q

<fu1- ‘”T“)um oMy (p=q)

= 0Ky (P = @) ]g=12 -

For example, the magnetic boson propagator Mg induces an
attracting interaction for d,2_2-wave superconductivity as
described in Sec. IV. The corresponding diagrams of Eq. (24)
are plotted in Fig. 1 for singlet symmetry o,,=+1 in a sym-
bolic way. The graphs in the brackets are the superconduct-
ing, initial Hubbard repulsion, magnetic, and forward scatter-
ing interaction, respectively. The square on the right-hand
side means that any two of the graphs in the bracket are put
beside one another and connected to form one-loop dia-
grams. This generates three types of graphs, namely, direct,
vertex correction, and box graphs (see Fig. 2). The latter two
are not of the form of a boson propagator mediating between
two fermion bilinears. We expand them in a sum of terms of
that form (given by our ansatz for the interaction) and drop
the remainder term. To get the coefficients in expansion (12),
we apply the projection equations.

In order to illustrate how the square in Fig. 1 is applied,
we state two examples. Taking two superconducting interac-
tions and connecting them with two fermion propagators
such that they form a loop gives the direct graph in Fig. 2(a).
If the loop integration is performed, it is again of the form of
two Cooper pairs interacting via a boson. By connecting a
superconducting interaction with a magnetic interaction a
vertex correction graph arises, as is given in Fig. 2(b). This is

O 0

(@)
o) ©

FIG. 2. Three examples of arising graphs if the square in Fig. 1
is taken: (a) the direct graph, (b) a vertex correction graph, and (c)
a box graph.

195125-8



EFFICIENT PARAMETRIZATION OF THE VERTEX...

T4 4]

FIG. 3. The flow in the magnetic channel.

>—=-R,

not of the demanded form, so the projection is nontrivial. A
box diagram, for example, is formed by connecting two mag-
netic interactions [see Fig. 2(c)].

In the magnetic channel the flow is described by

an(l)=—fdM(P’P+l)

|: E Mmb(l)fb< l) + U(SmS + a%(p’l)]

belyk

|: > Mbn(l)fb( l>+U55+an(Pl)]

belyk

(25)

where

1
a%(p,l)——

(23]
(2 )2'"

X E Daa (p Q)fa(

a,a GISC

P+tq
X N | +
fa( 2 )

X[Mp(p = q) = Kppr(p — )]

A
Joforsy

lgg=—1o/2

> f,,<

bb' ey

Again the initial Hubbard interaction contributes only to
the local s-wave coupling part. It will drive the boson propa-
gator Mgg. In contrast to that, the superconducting s-wave
boson propagator Dgg will screen the local magnetic interac-
tion Mgg. Because this effect is quite substantial, especially
if U is not very small, Dgg is important and must be included
in the flow, even though it does not become singular.
The influence of d,2_,> superconductivity with form factor
f1(p)=cos p,—cos p, depends strongly on the boson momen-
tum 1. Tt will suppress Mgg(I) near 1=0, that is, suppress
ferromagnetism, and enhance Mg() near 1= 7= (1, ), that
is, antiferromagnetism, since f)(p+)=—f;(p). The sym-
bolic representation with graphs of the flow [Eq. (25)] is
given in Fig. 3.

Finally the flow equation for the forward scattering chan-
nel is given by
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sty S|

FIG. 4. The flow in the forward scattering channel.

Kmn(l) == j d/*l’(p’p + l)

{3 «

beIyx

mbu)fb( l) US,s - 5(,,,1)1

Xl > Kbn(l)fb<p + %) - Ub,s- “f(PJ)},

beTyg

(26)

with

am(pvl) - 2 J (277)2fm q+ 2
+q

X 2Um E (l_zo-a)Daa’(p_q)fa<_)

2
> fb(p+q>

bb' €Ty 2

aa’ EISC

+
xfa,(l+—p2q> +

ber(l + %)[WW@ )

+ Ky (p—q)]

\q0=—lo/2

Similar to s-wave superconductivity Kgg is suppressed by U.
In analogy to the Kohn-Luttinger effect a Pomeranchuk bo-
son propagator K;; is induced by magnetic correlations.
Graphically the equation is sketched in Fig. 4.

We finish this section with some remarks on the just-
derived RG equations.

(1) Instead of the Hubbard model consider a mean-field
model. So set U=0 and let the initial condition for the boson
propagators be given by D, o()=D", 8, and similarly for
M and K. Then the flow equations recover mean-field theory
in the thermodynamic limit. Only the direct graphs contrib-
ute in the thermodynamic limit since the a’s acquire an ad-
ditional —~ factor.

(2) Ogservmg the flow equations, we find that the diago-
nal parts of the boson propagators at frequency zero are
monotonically increasing. This is no contradiction to previ-
ous N-patch schemes where the measured susceptibilities did
not need to be monotone. For example, the one-particle irre-
ducible part of the connected expectation value,
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—<Jdpfm(%—p><7f(q)§il(l—q);fdpfn<%—p)
><<Mq>§¢<z—q)>,

which corresponds to the singlet superconducting suscepti-
bility with f,,(p)=f,(=p), is here given by D,,,(I) plus a con-
tribution from the other channels. If the latter prevails, the
slope of the subdominant susceptibility can change sign even
for n=m and [=0.

(3) The flow equations stated so far are quite general.
They are valid for arbitrary sets of form factors Zgc and Z k.
Also, no assumptions have been made concerning the fre-
quency and momentum dependences of the boson propaga-
tors. For a numerical solution we specify this momentum
dependence in the next section. For given Zgc- and Z, this
leads to substantial simplifications.

VII. MOMENTUM DEPENDENCE
OF THE BOSON PROPAGATORS

While we have chosen particular functions for the form
factors, the frequency and momentum dependences of the
boson propagators are not specified yet. If this dependence is
not constrained, the RG equation for the boson propagators
still remains a system of integrodifferential equations which
is hard to solve. For the following numerical calculation we
neglect the frequency dependence of the boson propagators.
Together with the frequency-independent form factors, this
corresponds to a vertex function that does not depend on
frequency at all. The right-hand side of the flow equations is
evaluated at zero boson frequency, which gives the main
contribution.

Furthermore we approximate the boson propagators by
two-dimensional step functions. That is, their momentum de-
pendence is discretized by dividing momentum space into
segments on which the boson propagators are constant. Then
the RG equation is equivalent to a system of x ordinary dif-
ferential equations where x is the number of boson propaga-
tors times the number of segments. Note that the segments
chosen here are neighborhoods of a single point because the
boson propagators have point singularities. So they are dif-
ferent from the patches around the Fermi surface used in
N-patch studies.

Thus the computational effort is reduced compared to
Fermi-surface N-patch schemes, where the frequency depen-
dence is also neglected and x~N° with N the number of
patches for one fermion momentum. In many N-patch studies
N is reduced by projecting the momentum dependence onto
the Fermi surface. This is not done here; we allow a general
discrete momentum dependence of the boson propagators. It
will turn out in the RG flow that the singular momentum
dependence of the boson propagators is mainly determined
by the fermion one-loop bubbles. Therefore, contrary to
N-patch schemes, we can choose the size and alignment of
the segments to gain a more accurate approximation by step
functions.

For small scales and low temperature the bubbles can de-
velop strong peaks at transfer momentum 1=0 and l=7
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FIG. 5. Schematic plot of the segment sizes for n=4, m=3, and
a=2. The circles mark the spots where the boson propagators are
evaluated. The momentum dependence of the boson propagators on
full momentum space is obtained by using symmetries.

=(ar,) (or at 1=7— & for incommensurate Umklapp scatter-
ing). Possible singularities of the boson propagators are
closely related to the corresponding direct graphs, which
have the same momentum dependence as the bubbles. There-
fore we separate the momentum dependence of the boson
propagators into two parts,

B() =BOW1(L] +|i,| = m) + BDA - @)1(|L, - ]
+ |ly -al=m), (27)

for B=D, M, or K representing the different boson propaga-
tors and /,,/, € [0,27) and periodically continued elsewhere.
We now approximate B“(l), where a=0 or 7, by step func-
tions for |1,|+|l,| =7 with [,,], e (-, ]. Singularities will
appear for small 1=(/,,/,) only. However, since we do not
choose U< 1, the magnetic local propagators M (S“S)(l) driven
by U are not negligible for 1 away from zero. Likewise, the
propagators D(S”S)(l) and K(S“S)(l) are of order U for all mo-
menta. Therefore the step functions have to cover full mo-
mentum space and not just a small neighborhood of 1=0.
Symmetries of the boson propagators can be used to re-
duce the number of step functions necessary. If the boson
propagators are diagonal, then they obey the symmetries
B“(I,,1,)=B'(~1,,-1,)=B“)(1,,1,) where a=0 or 7. In fact,
for these symmetries to hold, the boson propagators are al-
lowed to consist of block matrices for special form factors,
such as f; and f3. Changing to polar variables /,=p cos ¢
and [,=p sin ¢, we divide the radial coordinate pe[0,3]
into n intervals as can be seen in Fig. 5. We choose smaller
segments for small p; that is, for k=1, ...n the segments are
[(k;—1 “%,(f “%], where =1 is a parameter for choosing
the radial size of the smallest segment. The boson propaga-
tors are evaluated at the left border of each interval. Using
the symmetries stated above, the angular variable ¢ needs
only to be discretized in [-7, 7. This range is divided into m
homogeneous intervals, where the boson propagators are
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evaluated at the midpoints. The k=1 radial segment has no
angular dependence imposed. Since we want to cover |/
+|l,| =7, one extra segment is needed for the difference of
the disk to the square. This more inaccurate approximation
for large momenta is justified since the singularity of the
bubbles develops at small momenta near O or 7.

In the numerical calculation presented in the next section,
we find that the magnetic and forward scattering boson
propagators have sizeable contributions on a larger radial
momentum range than the superconducting boson propaga-
tors, which have a strong peak for very small momenta only.
This can also be observed in a comparison of the particle-
particle and the particle-hole bubbles. Therefore we allow
different «’s for these two cases.

Omission of the frequency dependence and parametrizing
the momentum dependence with step functions simplifies the
flow equations drastically for given form factors. The Mat-
subara frequency sum over the loop frequency p can then be
calculated explicitly. Also, by trigonometric identities the q
integrations in the projections in aSC, o, and aX become
sums of terms, whose dependence on the loop momentum p
can be stated analytically. Thus only the momentum loop
integral has to be performed numerically to compute the
flow.

VIII. NUMERICAL RESULTS AT VAN HOVE FILLING

We have numerically solved the flow equations for the
boson propagators with different sets of form factors. The
choice of only a constant form factor f(p)=1 in all channels
plus standard d,2_,» superconductivity with form factor
f1(p)=cos p,—cos py in the superconducting channel already
given reasonable results. We have checked that including the
higher d,>_,» harmonic f3(p)=cos 3p,—cos 3p, in the super-
conducting expansion produces only very small changes.
Here we present results that are obtained by expanding all
channels in the same set of form factors Zgc=Zyx={S,1}.
Since @éﬁ(a):(bgg(a):o for a=0 or 7, the boson propaga-
tors are diagonal at momentum 1=0 or 7. Furthermore they
are diagonal for all |/,|=|/,| and this does not change in the
flow. However, away from |[,|=|/,| off-diagonal terms ap-
pear, which at first are neglected here since the singular
structure of the boson propagators lies on these lines. At the
end of this section we present results where off-diagonal bo-
son propagators are included.

The density is set to van Hove filling; that is, when vary-
ing the next-to-nearest-neighbor hopping —t’ the particle
number is changed to fit u=4¢". With this choice of param-
eters the Hubbard model at weak coupling has a strong ten-
dency toward ferromagnetism. Since we want to compare
our results with those of the temperature RG flow,® where
ferromagnetism was first found in a one-loop RG method for
the Hubbard model, we choose U=3 as well.** Smaller cou-
plings are harder to treat numerically.

While in principle our method can treat all temperatures,
for simplicity we here concentrate on temperature zero,
which is not accessible within the temperature RG flow.
However, starting at {)y=15, we find that for all choices of
t', at least one of the boson propagators becomes almost
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FIG. 6. (Color online) The critical scale in dependence on hop-
ping —t' at temperature zero and van Hove filling for initial cou-
pling U=3. The instabilities of the Landau Fermi liquid are deter-
mined as antiferromagnetism (AF), d,2_ 2-superconductivity (dSC),
and ferromagnetism (FM). The figure is further explained in the
text.

singular at a point. In an approximation (p>+mgy)~" for the
boson propagator, one would say that the mass mp of the
boson tends to zero. However, the propagators are not well
approximated by this simple form, except maybe at very
small momentum (depending on the scale (1), and this is the
main reason why we use a numerical method to capture the
momentum dependence. The flow to strong coupling ob-
served in previous fermionic RG studies is related to this
pointlike singularity in that certain approximations corre-
spond to setting p=0, which hides the fact that the interac-
tion only becomes strong at points.

Although in our study, there is no flow to strong coupling
in that sense, a true singularity in the interaction function
introduces a significant change in power counting, which
seems best to be captured by stopping the fermionic flow at
a certain scale ()., performing a transformation to exchange
bosons, and then attempting to continue to the symmetry-
broken phase. In our present study, we only consider the flow
to the scale (), which we call the critical scale, and leave the
other steps to future work. We stop the flow before the maxi-
mum of any boson propagator reaches B,,,,=20. The thus
defined critical scale, which roughly corresponds to a critical
temperature in the temperature flow, is plotted in Fig. 6 over
different hopping —¢'. The flow to strong coupling of a boson
propagator is interpreted as an instability to a corresponding
ordered state. However, this can only give a qualitative pic-
ture of the actual ground-state phase diagram. For the latter
the flow has to be continued in the symmetry-broken phase.
So, for example, the specific choice of B, is arbitrary.
However, it does not effect the qualitative features of Fig. 6.
For B,,.,=16, for example, the critical scale is at most about
15% higher in the magnetic regions and even less in the
superconducting region. Also, the range of —t' where super-
conductivity dominates shrinks by less than 1%.

As described in Sec. VII we approximate the momentum
dependence of the boson propagators by step functions,
which are constant on segments in momentum space. Even
for huge segments with m=1 and n=4 qualitatively consis-
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@ (b)

20, 20

FIG. 7. (Color online) Momentum dependence of the boson
propagators (a) M(”) (antiferromagnetism) and (b) D(l({) (dy2_y2 su-
perconductivity) at hopping —t"=0.3 and critical scale Q. The de-
pendence is obtained by an approximation with step functions char-
acterized by m=5, n=14, and =2 in (a) and =3 in (b). Although
the peak in (b) is very sharp, the small segments chosen at small
momenta describe it by more than one constant.

tent results are obtained, although the crossover values of —¢’
between different instabilities as well as the critical scale are
shifted compared to Fig. 6, where we have used m=5 and
n=14. For small and big —t' the critical scale shows little
dependence on different segment sizes, especially on the an-
gular resolution. However, in the crossover region between
superconductivity and ferromagnetism for intermediate —¢’
the angular dependence becomes important, although the
qualitative features of Fig. 6 remain unchanged. Plotting the
momentum dependence obtained in the flow, it can be seen
that only the boson propagators B'™ away from small —’
have a significant angular dependence. Those boson propa-
gators have four identical maxima that move away from 1
=0 as —¢' is increased. In an angular sector that contains a
maximum, they slowly increase on a high plateau for small
increasing radial momentum. For higher radial momenta in
the same sector they fall off rapidly after they passed the
maximum; see also Fig. 11(a) at the end of this section. On
the other hand, in between angular sectors that contain a
maximum, there are sectors where the value of the boson
propagator decreases from 1=0 with increasing radial mo-
menta. Consider, for example, Frg 7(a), where the antiferro-
magnetic boson propagator M ) is plotted at scale Q. and
parameter —#'=0.3. At this hopping the symmetric state is
unstable toward d,2_,> superconductivity, which is induced
by the antiferromagnetic boson propagator Neglecting the
angular momentum dependence of M ) results in a slightly
higher Q. for superconductivity.

Generally, the magnetic and forward scattering boson
propagators have sizeable contributions for a wide range of
radial momenta, while the superconducting boson propagator
Dy, has a very strong peak at 1=0, especially in the region
where superconductivity is dominant. This can be seen in
Fig. 7(b) where D, is plotted at )~ and hopping —#' =0.3. In
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order to adapt to these different momentum scales we have
chosen agc=3 for all superconducting boson propagators
and ayr=2 for all magnetic and forward scattering boson
propagators.

Now we discuss Fig. 6. For small —#' the boson propaga-
tor M (l) at =0 grows strongest, indicating an instability
toward an antiferromagnetic phase. Since the flow is stopped
at a relatively high scale {)-~ 0.1, perfect nestinglike effects
are not restricted to —#'=0. If —¢' is increased between
0.08<-t"<<0.23 the antiferromagnetic boson propagator is
still the leading term. However its maximum is away from
1=0; that is, it has four identical maxima, similar to Fig. 7(a).
This reflects a tendency to incommensurate antiferromag-
netic order, indicated by open squares in Fig. 6.

For —t' €[0.23,0.34] the leading term is the supercon-
ducting boson propagator D(lol)(l) at 1=0, which represents
d_-wave superconductivity. As discussed in Sec. 1V, it is
induced by antiferromagnetic correlations. In Fig. 8(a) the
flow of DY(0) is plotted for —'=0.3, dependent on the
scale. First incommensurate antiferromagnetic correlations
dominate and D'J(0) is enhanced by them but stays small
down to low scales. When a significant superconducting cou-

pling is reached, the dlrect graph ~p\ (0)2(19 »(0) contrib-
utes strongly such that D11 (0) increases very fast and be-
comes the dominant coupling. The crossover between the
antiferromagnetic and the d2_,» superconducting region is
not sharp in the scheme applied here. Around —¢'=0.23 both
tendencies grow very strongly, making it difficult to judge
numerically which is the dominant instability. The overlap of
the two regions in Fig. 9(a) corresponds to the so-called
saddle-point region.!?

As —t' is increased the antiferromagnetic correlation in-
dicated by |P
hanced because |(I>ph(0)| becomes bigger. Both affect the
critical scale in the superconducting region, which is con-
tinuously dropping, especially when —¢' gets close to the
ferromagnetic region. This indicates that d,2_,> superconduc-
tivity is not only induced by antiferromagnetic correlations
but also suppressed by ferromagnetic tendencies.

For high —t'>0.34 the leading instability is ferromag-
netism, represented by the dominant flow of M (l 0). The
critical scale rises again as —t' increases. However, the criti-
cal scale is still about 1 order of magnitude lower than the
Stoner criterion suggests. The Stoner criterion for ferromag-
netism is obtained by neglecting the particle-particle channel
and is given by U|<Dph(0)|=1. Therefore superconducting
fluctuations suppress ferromagnetism as well. However, out-
side the d-wave superconduct1v1t?/ region the superconduct-
ing d-wave boson propagator Dll (I) remains small [see Fig.
9(a) for its maximum at 1=0]. A significant contribution to
this suppression comes from s-wave superconductivity Dy
and D(S’;), so-called screening (compare Fig. 10).

In summary, ferromagnetism and d-wave superconductiv-
ity are competing instabilities of the (z,#')-Hubbard model
for relatively large —¢' at van Hove filling. In the calculation
presented here the crossover between superconductivity and
ferromagnetism takes place at —t'=0.34 which is in good
agreement with —#'=0.33 found with the temperature RG
flow® and the two-particle self-consistent Monte Carlo
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FIG. 8. (Color online) The dominant flows for two different values of —# in the superconducting region. The peak of the boson
propagator D(l(}) at momentum zero evolves slowly but reaches the value 20 first. According to the definition of the critical scale (), the flow
is stopped and all boson propagators are manually put constant for scales below Q. In (a) —t' =0.3 is well inside the superconducting region
while in (b) —#'=0.34 is the crossover to the ferromagnetic region. Here both instabilities grow strongly. Their mutual suppression results in
a lower critical scale. In both figures antiferromagnetic fluctuations are dominant for intermediate scales, inducing d,2_,> superconductivity.

approach.'® This is also roughly the value of —t' where
®@,,(0)=D,,;,(7). However, compared to the temperature RG
flow, the suppression between these competing tendencies is
weaker in the approximation used here. Although for low
and high —¢' the critical scale () is roughly the same as the
critical temperature of the temperature RG flow, the latter is
2 orders of magnitude lower in the crossover region between
superconductivity and ferromagnetism. Especially, the re-
sults obtained here do not suggest a quantum critical point
separating these two instabilities in the phase diagram. In-
stead, in the crossover region both processes grow strongly
such as in the crossover between antiferromagnetism and su-
perconductivity. However, the crossover is much sharper as
can be seen in Fig. 9(a). The superconducting boson propa-
gator D(l(i) remains small as soon as —¢’ enters the ferromag-
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netic region, while in the antiferromagnetic region supercon-
ducting tendencies persist such that this crossover region is
broader.

At present, it is not clear to us where this difference to the
temperature RG flow comes from as both schemes contain
rather different approximations. The RG equations for the
boson propagators imply that their diagonal parts are mono-
tonically increasing in the flow. Already a small inexactness,
such as the omission of the remainder terms or the discreti-
zation of the momentum dependence, can prevent an exact
cancellation on the right-hand side of the flow equation for
D(ﬁ) and M (SOS) On the other hand, the projection to the Fermi
surface, used in the temperature RG flow® but not here, is
expected to enhance superconducting tendencies. This could
possibly lead to a stronger suppression. Furthermore, the ()
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FIG. 9. (Color online) Overview of the maximal value of the boson propagators at the critical scale, which is plotted as a thin dotted line.
In (a) the three dominant instabilities are plotted, that is, antiferromagnetism, d,2_,2 superconductivity, and ferromagnetism. The maxima of
some subleading boson propagators are plotted in (b). The kinks in the plot indicate the crossovers to another dominant instability. For large
—t'" the discretization scheme for the momentum dependence becomes insufficient for the antiferromagnetic boson propagator, whose four
maxima move toward the edge of its support. Due to the large segment sizes there, max; M(SZ)(I) jumps discontinuously if the maxima leave
the support and another segment contains the new maxima (compare Fig. 7).
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FIG. 10. (Color online) The effective on-site coupling U, is plotted in dependence on —¢" for different scales in (a). The curves to
different values of ) are drawn only over the interval where ) is still bigger than the critical scale Q. In (b) U, is evaluated at the critical
scale, which is plotted as a dotted line for comparison. The kinks in (b) indicate the crossovers of distinct instabilities.

scheme used here allows a clearer definition of the initial
conditions than the temperature scheme. It would be interest-
ing to perform an N-patch analysis with the proposed ()
regularization [Eq. (21)].

So far we have not discussed all boson propagators com-
puted in the flow. The s-wave forward scattering boson
propagators K(Os) and Kg? and the s-wave superconducting
boson propagators D< and D(’T) cannot become singular
since they are dommated by the m1t1a1 local repulsion U. In
Fig. 9(b) their final values are plotted over hopping —t". They
are biggest in the crossover region between superconductiv-
ity and ferromagnetism, indicating the amount of screening
and the low critical scale. The boson propagator K(ﬂ), repre-
senting a possible Pomeranchuk instability, is induced by
magnetic correlations in the flow. However, it is not domi-
nant in the parameter region considered here The other bo-
son propagators Dl s M(lol, M(lf, and K ) remain smaller
than 0.05 and hence are irrelevant here. Therefore, in order
to further reduce computing cost, they could be omitted. In
fact, only the boson propagators D (1’17), and K(1 do not
satisfy the symmetry B(“)(lx,l )= Bgl)(lx,—l\,) If they are not
computed in the flow, the angular segments only need to
cover the interval [0, f] This would half the number of step
functions necessary for the discretization of the momentum
dependence described in Sec. VII.

We have already mentioned that the effective on-site in-
teraction changes although the initial on-site repulsion U of
the Hubbard model is kept constant in the parametrization of
the vertex function [Eq. (9)]. Projecting to the on-site part
gives the scale-dependent effective on-site coupling,

dA
Ueff=U+f >
\

- DY)
L]+ = (277)211:0,% [

=M@ Id (1)]

which is plotted in Fig. 10 over hopping —t'. Although the
critical scale is lowest in between the superconductor and the
ferromagnet, the effective on-site coupling has not increased
much in comparison to higher scales. This indicates that the
amount of screening, especially in the crossover region be-
tween superconductivity and ferromagnetism, is substantial.

In a second numerical computation we study the influence
of off-diagonal boson propagators. In the superconducting
channel We consider the boson propagators Dgs’ D(S’g), D(ﬂ),
and Drs The first two are important to capture screening
effects, the third describes d,2_,2 superconductivity and the
last is an off-diagonal boson prbpagator that couples s- and
d-wave Copper pairs. In the magnetic and forward scattering
channels we only take into account the local s-wave boson
propagators M(SOS), M(ng, ss, and K(Sg) Compared to the pre-
vious numerical calculatlon apart from the irrelevant boson
propagators D(l’f), M e (1’17), and K7 11 , only the boson propa-
gator K(l(}), which indicates a possible Pomeranchuk instabil-
ity, is omitted. However, K\ 17 remained relatively small in the
first computation (see Fig. 9). Note that for this choice of
boson propagators there are no more off-diagonal terms than
the one included.

The flow equations imply that the diagonal boson propa-
gators obey the additional symmetry B(“)(l 1,)=B9(l,~I V).
The off-diagonal boson propagator D s) obeys this symmetry
as well and is also symmetric under 1——1. However, it is
antisymmetric under exchange of [« /,. Therefore, com-
pared to the choice of step functions described in Sec. VII,
we only need to consider segments with an angle ¢
=arctan% in the interval [0, Z—T]. Since we still use the param-
eter values m=5 and n=14, the angular resolution is higher
in this second numerical computation. Again we computed
the RG flow of the boson propagators for coupling U=3 at
temperature zero and van Hove filling for various —t'
€ (0,%). Since no major process was omitted compared to
the first numerical computation, no significant change could
be observed in the figures presented. Furthermore, the maxi-
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FIG. 11. (Color online) The antiferromagnetic boson propagator M(S’g) plotted over radial momenta for different angular sectors centered

I, . . . .
at ¢p=arctany". For the first numerical calculation shown in (a) the centers of the angular sectors take the values ¢l~=—f+ (i—- %)%, and for the

computation with an off-diagonal boson propagator in (b) the angular sectors are centered at qﬁj:(j—%)ﬁ.

mum of the off-diagonal boson propagator D(l%) remains

smaller than 0.3 for —t'=0.37 and smaller than 0.03 for
—t' <0.37. The off-diagonal boson propagator that couples s-
and d-wave Copper pairs can therefore be neglected in good
approximation.

The only difference in the two different numerical calcu-
lations is found in the shape of the antiferromagnetic boson
propagator M(S? for relatively high —¢'. We already com-
mented on the insufficient description of large radial mo-
menta of the antiferromagnetic boson propagator M(Sg),
which is plotted in Fig. 11 at —#'=0.3 dependent on p in
different angular sectors, in (a) for the first and in (b) for the
second numerical computation of this section. Note that the
angular degeneracy in (a) is due to the same number of an-
gular segments in the larger angular interval [-7,7]. The
major difference between both figures is that in (b) the boson
propagator has its maximal value at smaller radial momen-
tum p. This can play a role in the search for an analytic
parametrization of the antiferromagnetic boson propagator,
although the plateau in the angular sector ¢=0 for interme-
diate p seems to be its most important feature. However, note
that the angle ¢=0 is not a center of an angular sector in (b).
The maximal value of the boson propagator is found in the
nearest angular segment, which contains ¢=0 but is centered
at ¢p=75. This could also be a partial explanation of the ob-
served difference.

IX. CONCLUSION

We have presented a parametrization of the one-loop one-
particle irreducible RG equation for the four-point function
and applied it to the two-dimensional Hubbard model using a
soft frequency regularization scheme. The parametrization is
based on the idea of separating dominant interactions from
irrelevant remainders, where the latter do not influence the
leading instabilities of the flow. This idea is implemented by
writing the effective two-fermion interaction as a sum of
dominant terms where fermion bilinears interact via ex-
change bosons. Each such term consists of a boson propaga-
tor and boson-two-fermion vertex functions. From the singu-

s

lar momentum structure of the RG equation we identify three
different channels in the interaction. In these channels the
boson-fermion vertex function is expanded in scale-
independent form factors. We argued that only a few terms
are needed in the expansions to describe the qualitative struc-
ture of the flow. The tails of the expansions are the above-
mentioned remainder terms, which are neglected. Although
the scale-dependent coefficient functions of the expansions
are called boson propagators, they are kept as fermionic in-
teraction terms. Their flow is computed by suitable projec-
tions of the fermionic RG equation.

The application of this method to the (z,¢')-Hubbard
model at van Hove filling and temperature zero shows indeed
that the essential qualitative structure of the one-loop RG is
preserved. We are able to reproduce the leading weak-
coupling instabilities of the model as they were found in
previous RG studies using N-patch schemes. In particular,
our results are in good qualitative agreement with the tem-
perature RG flow.® We use a frequency regularization, which
like the temperature regularization does not artificially sup-
press ferromagnetism but allows to state the initial condi-
tions of the RG flow more clearly. For an initial repulsive
on-site interaction U=3 we find three distinct regions, char-
acterized by the leading weak-coupling instability and de-
pending on next-to-nearest-neighbor hopping (see Fig. 6).
For small next-to-nearest-neighbor hopping —t' antiferro-
magnetism dominates. As was found in the N-patch schemes,
antiferromagnetic correlations induce a d,>_,2-wave super-
conductivity instability, which becomes dominant for inter-
mediate —¢'. For high —¢' the leading instability is ferromag-
netism. In between the d,2_2-wave superconducting and the
ferromagnetic region the critical scale drops 2 orders of mag-
nitude. We argue that this is due to the mutual suppression of
these opposing correlations. Compared to the temperature
RG scheme,® however, we find that this suppression is
weaker here. In particular, our result does not suggest a
quantum critical point between the two regions. Because we
have not been able to trace this discrepancy to certain scat-
tering processes, we regard this matter as open and leave it
for further study.
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The proposed method is in general not restricted to tem-
perature zero and van Hove filling. Finite temperature only
affects the calculation of the one-loop fermion bubbles,
which then becomes more involved. Away from van Hove
filling triplet superconductivity plays a role for high —¢'.6
The flow equations stated in Sec. VI can account for that.
However, it is not clear that a single form factor suffices to
describe dominant triplet superconductivity. The results of
the temperature RG flow® suggest that at least three different
triplet form factors would have to be taken into account.

The benefit of the proposed parametrization of the vertex
function is a reduction in complexity of the full one-loop
flow to some dominant terms. We believe that separating
leading from subleading processes will help gain further in-
sight into the structure of the one-loop RG. However, we
have not performed a detailed analysis of the remainder. The
comparison with previous N-patch studies suggests, never-
theless, that we did capture the most important processes.
Rigorous proof is particularly complicated at van Hove fill-
ing due to the strong mixing of the particle-particle and the
particle-hole channels. We gave clear arguments for deter-
mining the dominant terms in case of a regular and curved
Fermi surface.

Practically, this reduction in complexity results in lower
computing cost compared to previous N-patch schemes. In
the numerical implementation the momentum dependence of
the boson propagators is discretized using step functions.
The choice of segments, where the step functions are con-
stant, can be guided by the form of the one-loop bubbles.
This allows a more precise discretization than the general
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patching of the vertex function in N-patch schemes. In par-
ticular, no momentum dependence is projected onto the
Fermi surface. Furthermore, the proposed decomposition
gives possibly a way to further improvement. If the momen-
tum dependence of the one-loop bubbles can be parametrized
in an analytical form, then it should be possible to extract a
functional parametrization of the boson propagators from the
flow equations, at least for small momenta. Deviations for
large momenta, away from the maxima of the boson propa-
gators, could be subject to another negligible remainder.
However, the momentum dependence of the bubbles is dif-
ficult to describe since a naive power expansion is not suffi-
cient. Nevertheless, while in the numerical calculation we
have neglected the frequency dependence of the boson
propagators, a similar procedure for small frequencies could
take into account at least part of the frequency dependence of
the vertex function.

The proposed decomposition of the effective two-fermion
interaction is of a form that suggests the decoupling of the
fermion bilinears via multiple Hubbard-Stratonovich trans-
formations. The ambiguity of introducing boson fields is not
completely removed but at least reduced. This allows con-
tinuation of the RG flow into the symmetry-broken phase in
a (partially) bosonized form.
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